Lecture 4: Perceptrons and Multilayer Perceptrons

Cognitive Systems II - Machine Learning

SS 2005

Part I: Basic Approaches of Concept Learning

Perceptrons, Artificial Neuronal Networks
Biological Motivation

- biological learning systems are built of complex webs of interconnected neurons

Motivation:
- capture kind of highly parallel computation
- based on distributed representation

Goal:
- obtain highly effective machine learning algorithms, independent of whether these algorithms fit biological processes (*no cognitive modeling!*)

Biological Motivation

<table>
<thead>
<tr>
<th></th>
<th>Computer</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>computation units</td>
<td>1 CPU (> 10^7 Gates)</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>memory units</td>
<td>512 MB RAM</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td></td>
<td>500 GB HDD</td>
<td>10^{14} synapses</td>
</tr>
<tr>
<td>clock</td>
<td>10^{-8} sec</td>
<td>10^{-3} sec</td>
</tr>
<tr>
<td>transmission</td>
<td>> 10^9 bits/sec</td>
<td>> 10^{14} bits/sec</td>
</tr>
</tbody>
</table>

- **Computer:** serial, quick
- **Brain:** parallel, slowly, robust to noisy data
Appropriate Problems

BACKPROPAGATION algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are represented as many attribute-value pairs
 - input values can be any real values
- target function output may be *discrete-, real- or vector-valued*
- training examples *may contain errors*
- long training times are acceptable
- fast evaluation of the learned target function may be required
 - many iterations may be necessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - learned weights are not intuitively understandable
Perceptrons

- takes a vector of real-valued inputs \((x_1, \ldots, x_n)\) weighted with \((w_1, \ldots, w_n)\)
- calculates the linear combination of these inputs
 \[\sum_{i=0}^{n} w_i x_i = w_0 x_0 + w_1 x_1 + \ldots + w_n x_n \]
- \(w_0\) denotes a threshold value
- \(x_0\) is always 1
- outputs 1 if the result is greater than 1, otherwise \(-1\)
a perceptron represents a **hyperplane decision surface** in the n-dimensional space of instances.

- some sets of examples cannot be separated by any hyperplane, those that can be separated are called **linearly separable**.

- many boolean functions can be represented by a perceptron: AND, OR, NAND, NOR.
Perceptron Training Rule

problem: determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example

perceptron training rule:

$$w_i = w_i + \Delta w_i \text{ where } \Delta w_i = \eta (t - o)x_i$$

- t target output
- o perceptron output
- η learning rate (usually some small value, e.g. 0.1)

algorithm:

1. initialize \vec{w} to random weights
2. repeat, until each training example is classified correctly
 (a) apply perceptron training rule to each training example

convergence guaranteed provided linearly separable training examples and sufficiently small η
Delta Rule

- perceptron rule fails if data is not linearly separable
- delta rule converges toward a best-fit approximation
- uses gradient descent to search the hypothesis space
 - perceptron cannot be used, because it is not differentiable
 - hence, a unthresholded linear unit is appropriate
 - error measure: \(E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \)
- to understand gradient descent, it is helpful to visualize the entire hypothesis space with
 - all possible weight vectors and
 - associated \(E \) values
the axes w_0, w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be parabolic with a single global minimum
Derivation of Gradient Descent

problem: How calculate the steepest descent along the error surface?

derivation of E **with respect to each component of** \vec{w}

this vector derivate is called gradient of E, **written** $\nabla E(\vec{w})$

\[
\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right]
\]

$\nabla E(\vec{w})$ **specifies the steepest ascent**, so $-\nabla E(\vec{w})$ **specifies the steepest descent**

training rule: $w_i = w_i + \Delta w_i$

\[
\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \quad \text{and} \quad \frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})
\]

\[
\Rightarrow \Delta w_i = \sum_{d \in D} (t_d - o_d) x_{id}
\]
Incremental Gradient Descent

- application difficulties of gradient descent
 - convergence may be quite slow
 - in case of many local minima, the global minimum may not be found

- idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example

\[\Delta w_i = \eta (t - o) x_i \text{ where } E_d(\vec{w}) = \frac{1}{2} (t_d - o_d)^2 \]

- key differences:
 - weights are not summed up over all examples before updating
 - requires less computation
 - better for avoidance of local minima
Gradient Descent Algorithm

GRADIENT-DESCENT\((\text{training_examples}, \eta)\)

Each training example is a pair of the form \(<\vec{x}, t>\), where \(\vec{x}\) is the vector of input values, and \(t\) is the target output value. \(\eta\) is the learning rate.

- Initialize each \(w_i\) to some small random value
- Until the termination condition is met, Do
 - Initialize each \(\Delta w_i\) to zero
 - For each \(<\vec{x}, t>\) in \(\text{training_examples}\), Do
 - Input the instance \(\vec{x}\) to the unit and compute the output \(o\)
 - For each linear unit weight \(w_i\), Do \(\Delta w_i = \Delta w_i + \eta(t - o)x_i^*\)
 - For each linear unit weight \(w_i\), Do \(w_i \leftarrow w_i + \Delta w_i^{**}\)

To implement incremental approximation, equation ** is deleted and equation * is replaced by \(w_i \leftarrow w_i + \eta(t - o)x_i\).
Perceptron vs. Delta Rule

Perceptron training rule:
- uses thresholded unit
- converges after a finite number of iterations
- output hypothesis classifies training data perfectly
- linearly separability necessary

Delta rule:
- uses unthresholded linear unit
- converges asymptotically toward a minimum error hypothesis
- termination is not guaranteed
- linear separability not necessary
Multilayer Networks (ANNs)

- capable of learning **nonlinear** decision surfaces
- normally **directed** and **acyclic** \Rightarrow Feed-forward Network
- based on **sigmoid unit**
 - much like a perceptron
 - but based on a smoothed, **differentiable threshold function**

$$\sigma(net) = \frac{1}{1+e^{-net}}$$

$$\lim_{net \to +\infty} \sigma(net) = 1$$

$$\lim_{net \to -\infty} \sigma(net) = 0$$

$$net = \sum_{i=0}^{n} w_i x_i$$

$$o = \sigma(net) = \frac{1}{1 + e^{-net}}$$
BACKPROPAGATION

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections
- employs gradient descent to minimize error
- redefinition of E
 - has to sum the errors over all units
 - $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2$

- problem: search through a large H defined over all possible weight values for all units in the network
BACKPROPAGATION algorithm

BACKPROPAGATION\((training_examples, \eta, n_{in}, n_{out}, n_{hidden})\)

The input from unit \(i\) to unit \(j\) is denoted \(x_{ji}\) and the weight from unit \(i\) to unit \(j\) is denoted \(w_{ji}\).

1. create a feed-forward network with \(n_{in}\) inputs, \(n_{hidden}\) hidden units, and \(n_{out}\) output units
2. Initialize all network weights to small random numbers
3. Until the termination condition is met, Do
 a. For each \(<\vec{x}, \vec{t}>\) in \(training_examples\), Do
 i. Propagate the input forward through the network:
 1. Input \(\vec{x}\) to the network and compute \(o_u\) of every unit \(u\)
 ii. Propagate the errors back through the network:
 2. For each network output unit \(k\), calculate its error term \(\delta_k\)
 \[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)\]
 3. For each hidden unit \(h\), calculate its error term \(\delta_h\)
 \[\delta_h \leftarrow o_h(1 - o_h)\sum_{k\in\text{outputs}} w_{kh}\delta_k\]
 4. Update each weight \(w_{ji}\)
 \[w_{ji} \leftarrow w_{ji} + \Delta w_{ji}\text{ where }\Delta w_{ji} = \eta\delta_j x_{ji}\]
Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold

important:
- too few iterations reduce error insufficiently
- too many iterations can lead to overfitting the data
Adding Momentum

- One way to avoid local minima in the error surface or flat regions.
- Make the weight update in the n^{th} iteration depend on the update in the $(n - 1)^{th}$ iteration.

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n - 1)$$

$$0 \leq \alpha \leq 1$$
Representational Power

boolean functions:
- every boolean function can be represented by a two-layer network

continuous functions:
- every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)

arbitrary functions:
- each arbitrary function can be approximated to arbitrary accuracy by a three-layer network
Inductive Bias

- every possible assignment of network weights represents a syntactically different hypothesis

\[H = \{ \vec{w} | \vec{w} \in \mathbb{R}^{(n+1)} \} \]

- inductive bias: smooth interpolation between data points
Illustrative Example - Face Recognition

task:

- classifying camera image of faces of various people
- images of 20 people were made, including approximately 32 different images per person
- image resolution 120×128 with each pixel described by a greyscale intensity between 0 and 255
- identifying the direction in which the persons are looking (i.e., left, right, up, ahead)
Illustrative Example - Design Choices

input encoding:
- image encoded as a set of 30×32
- pixel intensity values ranging from 0 to 255 linearly scaled from 0 to 1
 ⇒ reduces the number of inputs and network weights
 ⇒ reduces computational demands

output encoding:
- network must output one of four values indicating the face direction
 - *1-of-n* output encoding: 1 output unit for each direction
 ⇒ more degrees of freedom
 ⇒ difference between highest and second-highest output can be used as a measure of classification confidence
network graph structure:

- BACKPROPAGATION works with any DAG of sigmoid units
- question of how many units and how to interconnect them
- using standard design: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer

⇒ 30 hidden units
⇒ test accuracy of 90%
Advanced Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure
able to learn discrete-, real- and vector-valued target functions

noise in the data is allowed

perceptrons learn hyperplane decision surfaces (linear separability)

multilayer networks even learn nonlinear decision surfaces

BACKPROPAGATION works on arbitrary feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples

an arbitrary function can be approximated to arbitrary accuracy by a three-layer network

Inductive Bias: smooth interpolation between data points