Lecture 8: Instance-based Learning

Cognitive Systems II - Machine Learning

SS 2005

Part II: Special Aspects of Concept Learning

κ-nearest neighbors, locally weighted linear regression
radial basis functions, lazy vs. eager learning
Motivation

- All learning methods presented so far construct a general explicit description of the target function when examples are provided.

- **Instance-based learning:**
 - Examples are simply stored.
 - Generalizing is postponed until a new instance must be classified.
 - In order to assign a target function value, its relationship to the previously stored examples is examined.
 - Sometimes referred to as **lazy learning**.
Motivation

advantages:
- instead of estimating for the whole instance space, local approximations to the target function are possible
- especially if target function is complex but still decomposable

disadvantages:
- classification costs are high
 - efficient techniques for indexing examples are important to reduce computational effort
- typically all attributes are considered when attempting to retrieve similar training examples
 - if the concept depends only on a few attributes, the truly most similar instances may be far away
k-nearest Neighbor Learning

- most basic instance-based method
- assumption:
 - instances correspond to a point in a n-dimensional space \mathbb{R}^n
 - thus, nearest neighbors are defined in terms of the standard Euclidean Distance

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

where an instance x is described by $< a_1(x), a_2(x), \ldots, a_n(x) >$

- target function may be either discrete-valued or real-valued
k-nearest Neighbor Learning

discrete-valued target function:
- $f: \mathbb{R}^n \rightarrow V$ where V is the finite set $\{v_1, v_2, ..., v_s\}$
- the target function value is the most common value among the k nearest training examples

$$\hat{f}(x_q) \leftarrow \arg \max_{v \in V} \sum_{i=1}^{k} \delta(v, f(x_i))$$

where $\delta(a, b) = (a == b)$

continuous-valued target function:
- algorithm has to calculate the mean value instead of the most common value
- $f: \mathbb{R}^n \rightarrow \mathbb{R}$

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}$$
k-nearest Neighbor Learning

e.g. instances are points in a two-dimensional space where the target function is boolean-valued

- 1-nearest neighbor: x_q is classified positive
- 4-nearest neighbor: x_q is classified negative
Hypothesis Space

- **no explicit** hypothesis is formed
- decision surface is a combination of convex polyhedra surrounding each of the training examples
- for each training example, the polyhedron indicates the set of possible query points x_q whose classification is completely determined by this training example (*Voronoi diagram*)
Distance-Weighted Nearest Neighbor

The contribution of each of the k nearest neighbors is weighted according to their distance to x_q.

- **discrete-valued target functions**

 $$\hat{f}(x_q) \leftarrow \arg\max_{v \in V} \sum_{i=1}^{k} w_i \delta(v, f(x_i))$$

 where $w_i \equiv \frac{1}{d(x_q,x_i)^2}$ and $\hat{f}(x_q) = f(x_i)$ if $x_q = x_i$.

- **continuous-valued target function**:

 $$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$
highly effective inductive inference method for many practical problems provided a sufficiently large set of training examples

robust to noisy data

weighted average smoothes out the impact of isolated noisy training examples

inductive bias of \(k \)-nearest neighbors

- assumption that the classification of \(x_q \) will be similar to the classification of other instances that are nearby in the Euclidean Distance

curse of dimensionality

- distance is based on all attributes
- in contrast to decision trees and inductive logic programming
- solutions to this problem
 - attributes can be weighted differently
 - eliminate least relevant attributes from instance space
Locally Weighted Regression

- a note on terminology:
 - *Regression* means approximating a real-valued target function
 - *Residual* is the error $\hat{f}(x) - f(x)$ in approximating the target function
 - *Kernel function* is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that $w_i = K(d(x_i, x_q))$

- nearest neighbor approaches can be thought of as approximating the target function at the single query point x_q

- locally weighted regression is a generalization to this approach, because it constructs an explicit approximation of f over a local region surrounding x_q
Locally Weighted Linear Regression

- target function is approximated using a **linear function**
 \[\hat{f}(x) = w_0 + w_1 a_1(x) + \ldots + w_n a_n(x) \]

- methods like **gradient descent** can be used to calculate the coefficients \(w_0, w_1, \ldots, w_n \) to minimize the error in fitting such linear functions

- ANNs require a global approximation to the target function

- here, just a local approximation is needed

\[\Rightarrow \] the error function has to be redefined
Locally Weighted Linear Regression

possibilities to redefine the error criterion E

1. Minimize the squared error over just the k nearest neighbors

\[
E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors}} (f(x) - \hat{f}(x))^2
\]

2. Minimize the squared error over the entire set D, while weighting the error of each training example by some decreasing function K of its distance from x_q

\[
E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))
\]

3. Combine 1 and 2

\[
E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors}} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))
\]
Locally Weighted Linear Regression

- choice of the error criterion
 - E_2 is the most esthetically criterion, because it allows every training example to have impact on the classification of x_q
 - however, computational effort grows with the number of training examples
 - E_3 is a good approximation to E_2 with constant effort

\[
\Delta w_j = \eta \sum_{x \in k \text{ nearest neighbors}} K(d(x_q, x))(f(x) - \hat{f}(x))a_j
\]

- Remarks on locally weighted linear regression:
 - in most cases, constant, linear or quadratic functions are used
 - costs for fitting more complex functions are prohibitively high
 - simple approximations are good enough over a sufficiently small subregion of X
Radial Basis Functions

closely related to distance-weighted regression and to ANNs

learned hypotheses have the form

\[\hat{f}(x) = w_0 + \sum_{u=1}^{k} w_u \cdot K_u(d(x_u, x)) \]

where

- each \(x_u \) is an instance from \(X \) and
- \(K_u(d(x_u, x)) \) decreases as \(d(x_u, x) \) increases and
- \(k \) is a user-provided constant

though \(\hat{f}(x) \) is a global approximation to \(f(x) \), the contribution of each of the \(K_u \) terms is localized to a region nearby the point \(x_u \)
Radial Basis Functions

- it is common to choose each function $K_u(d(x_u, x))$ to be a Gaussian function centered at x_u with some variance σ^2

 $$K_u(d(x_u, x)) = e^{\frac{1}{2\sigma_u^2} d^2(x_u, x)}$$

- the function of $\hat{f}(x)$ can be viewed as describing a two-layer network where the first layer of units computes the various $K_u(d(x_u, x))$ values and the second layer a linear combination of the results
Case-based Reasoning
Remarks on Lazy and Eager Learning

- **lazy methods** defer the decision of how to generalize beyond the training data until a new query instance x_q is encountered.

- **eager methods** generalize before any new query instance is encountered.

- Differences in computation time are obvious.

- Essential differences in the inductive bias:
 - Lazy methods are able to consider the query instance x_q when deciding how to generalize.
 - Eager methods already have committed to a global approximation of the target function before any x_q is encountered.

 \Rightarrow A lazy learner uses a richer H, because it uses many different local hypotheses to form a global approximation.
Summary

- Instance-based learning simply stores examples and postpones generalization until a new instance is encountered.
- Able to learn discrete- and continuous-valued concepts.
- Noise in the data is allowed (smoothed out by weighting distances).

Inductive Bias of \(k \)-nearest neighbors: classification of an instance is similar to the classification of other instances nearby in the Euclidean Distance.

- Locally Weighted Regression forms a local approximation of the target function.