Intelligent Tutor Systems

- Expert Knowledge and Skills about his/her domain
- Didactic/pedagogical principles
- Knowledge about typical misconceptions and how to resolve them
- Model about the learning history, state of knowledge, previous errors of the individual pupil

see lecture of Frank Puppe, Würzburg:
http://ki.informatik.uni-wuerzburg.de/teach/ss-2003/its/uebungen/
Introduction (1), ITS (4), History of ITS (5)
Learning

- Change of behavior caused by experience
 - Declarative: Extension of knowledge
 - Procedural: Skill acquisition
- Improvement by restructuring or incorporation of new knowledge/skills
 - Faster or more accurate performance (power law of learning)
 - New behavior
Types of Learning

- Rote Learning
 The capital of France is Paris.
 5 times 7 is 35.
 A dog is a mammal.

- Concept Learning
 Dog, Ancestor, Preparation to an exam such that I pass

- Skill and Strategy Acquisition
 Making a proof by induction, preparing a travel

- Concept learning and Skill acquisition is learning from examples, that is, inductive learning! (see lecture CogSysII)
Paradigms for Learning

- **Behaviorism**
 - “Brain” as Black Box
 - Teaching: Connecting the stimulus with the “correct” response
 - Positive (or negative) Feedback
 - “Drill and Test”

- **Cognitivism**
 - Information processing paradigm
 - Teaching: support for problem solving, learning by doing

- **Construktivism**
 - Learners build personal interpretations of the world based on individual experiences and interactions.
 - Teaching: Align and design experiences for the learner so that authentic, relevant contexts can be experienced.
Learning with the Computer

- Independence of time/place
- Individual speed of learning, individual interests
- Individual strategies of learning (?)
- Relieve of teachers (costs, availability, quality assurance)
- Learning dangerous activities (e.g. flight simulator)
- Learning in the context of realistic models
- Problems: social component of learning (model learning), restricted human-computer communication, trade-off of effort and utility, there are many bad systems
Didactic Principles

- Motivation: intrinsical vs. extrinsical
- Encouragement of creativity: give experience of perception with all sense, allow new ideas
- Differenciation: working with homogenous groups students
- Structuring: clear topic, separate in clear parts, systematic introduction of concepts and rules
- Illustration and exemplification
- Exercise and success control: allow for success (without making things trivial), relevance
Dimensions of Tutor Systems

- Tutor strategies
 - Explaining
 - Observing and Helping
 - Mentoring and Coaching

- Content: facts and context free rules; problem solving, complex situations, ...

- Goals: remembering, applying, understanding, discovering, ...
Types of Systems

- Presentation and Browsing
- Drill and Test
- Tutor Systems
- Intelligent Tutor Systems
- Simulations
Presentation and Browsing

- Restricted interaction, fixed branching
- Hypertext and Hypermedia
- Cheaper than books, full text search
Drill and Test

- Only tests, with statistics (percent correct answers etc.)
- Vocab trainer, medicine exams, driving licence
- Wer wird Millionär?

Types of Questions
- Closed: Multiple Choice, Rank order, cloze (Lückentext)
- Open: input of numbers, text
Tutor Systems

- Teaching of new contents/skills, Question Answering by the system
- Simple tutor systems do *not* have an internal student model!
- Computer-aided instruction: module and questions, depending on the answers repetition with variations or progress
- Frame-oriented CAI: discrimination between error types and branching (variations) in dependence of the recognized type (predecessor to student model in ITS)
Simulation

- Technical or social simulation
- Can be based on causal mental models/qualitative reasoning
- Student actions are executed in the simulation model, this is the only form of feedback
- Dynamical, high degree of interaction
- E.g. simulation systems for complex problem solving (Dörner)
- E.g. SOPHIE (early system of the 70ies): debugging of electronical circuits
- E.g. LOGO (Papert, late 60ies)
- compare to Lego, electronical kits
ITS Overview

- Simple tutor systems no nothing about what they teach and whom they teach
- 70ies: with the beginning of AI research, extension of tutor systems with internal knowledge modules
- Paradigm: cognitivism
- System has its own inference component
- Because of internal models: generation of interaction sequences, exercises; system is able to answer questions
Knowledge models:

- **Domain model**
 e.g. SOPHIE (geography of South America), allows mixed initiative dialogs

- **Learner model**
 e.g. GUIDON (tutor extension of the expert system MYCIN), allows diagnosis of didactical relevant states of the student from different data sources (dialog history, behavior of the student, goal-directed intervention)
Components of ITSs

Source: http://home2.pacific.net.sg/auddrick/its.html

Figure 6.2 Anatomy of an Intelligent Tutoring System
Components of ITSs

- GUI: often involves the most effort: robust and intuitive
- Didactic component: lecture modules, plan of sessions, pedagogical knowledge, pedagogical strategies
- Student model: model of the knowledge of the student, base for planning further didactical procedure
- Domain model: expert knowledge and skill, often executable, inference component allows to answer student questions
Applications of ITSs

- Medicin (GUIDON): problem based learning with generated feedback
- Mathematics (e.g. Geometry Tutor based on ACT): learning algebra or proofs in geometry with step-by-step application and generated feedback
- Programming (e.g. Lisp Tutor based on ACT)
- many more: see history of ITS
Pros and Cons of ITSs

- Pro: Highly flexible and adaptive
- Main Problem: very high effort, esp. for domain model and for some types of student models
- Restricted language for the student-tutor dialogues
- No inter-human student-teacher relationship
Domain Model

- Source of Knowledge and standard for evaluation of student inputs
- must be communicable (simple, symbolic repres.)
- simple processing (no complex numerical calculations such as Bayes), no complex control structures (best is linear, no nesting of loops etc)
- Relation to previous knowledge of students
- May be knowledge on different competence levels
- Knowledge Representation with: semantic nets, frames, rules, constraints, qualitative or quantitative simulation
- Diagnostic knowledge models: decision trees, heuristic diagnosis, case-based diagnosis
- Agent models for distributed knowledge, ...
Student Model

- What does the student know? (know that)
- What can the student do? (know how)
- What did the student do until now? (history)
- What type is the student?

Input/Generation:
- explicit: stereotype selection
- implicit interrupting: interruption, explicit enquiry
- implicit automatically: monitoring
Types of Student Models

- Stereotypes
- Error Libraries
- Overlay Models
- Extended Overlay Models
- Constructive Models
Stereotypes

- Facts, attributes and preferences which are interrelated
- Example intermediate student knows all simple knowledge units and some medium-level knowledge units
Error Libraries

- Collection of typical errors and misconceptions of students
- Select an item from the library during a tutoring situation
- Simple and flexible, but high costs in assessment
Overlay Model

- Domain model is extended by annotations: which knowledge unit is known by a student
 - simple but not flexible
 - implicit assumption: errors are due to incomplete knowledge
- Extended Overlay Model: additionally taking into account errors and misconceptions; can be generated from knowledge elements or from error library (very good but very expensive)
Dynamically Constructed Model

- Use machine learning to generate models about student knowledge
- highly flexible but difficult to obtain
Applications

- WHY, SOPHY: no student model
- Geography Tutor SCHOLAR: overlay model initiative dialog
- BUGGY (and others): error libraries
- LISP-Tutor: extended overlay (correct and erroneous production rules)

These and other classical systems are presented in lecture 5 of Frank Puppe.
Problems with Student Models

- How good can a student model be?
 - inconsistencies in behavior due to motivation, concentration, “luck”
 - Combinations of errors can produce unexpected (maybe even correct) behavior

- Clustering students in learning psychological stereotypes (cognitive styles; motivational styles) is controversial

- Privacy and data security
Didactical Module

- Which paradigm? which kind of learning? (reception, transfer, problem solving, ...) which competences? (cognitive, organizational, communicative ...)
- Initiative: system, learner, mixed
- Presentation: sequence, degree of guidance
- Tasks: number, time, complexity
- Feedback: eager or by request, hints, explanations, examples
Dealing with Student Errors

- What kind of error?
 - Profound error in content/in learning progress?
 - Error rates; repetition of same error?
 - Error recognized with certainty?
 - Reaction: ignore, protocoll, hint, insist on correction

- Typically realized by set of rules
Explanations and Evaluations

- Explanations by the student (socratical dialog): open or closed form inputs; evaluation by tutor system, relation to explanations of domain model
- Explanations of the system: pre-formulated or generated, general or situational, automatically or by request, degree of details
- Evaluation: generated or static, situational or dependent on result
GUI

- Robust, efficient, easy to learn and use
- Interaction language: commands, restricted natural, natural
- Interface to model: icons, menues, graphics
- Flexible navigation (event based vs guided)
- Taking account of context, learning history

Requirements for GUIs see last slides in lecture 4 of Puppe
Current Trends

- Reuse and standardisation of content
- Support of collaborative learning, distant learning
- Adaptive tutor systems
 - e.g. Netcoach