SVM Active Learning

Soufyane El Allali

July 25, 2006

- Support Vector Machines recap
- 2 Defining version space
- 3 Active learning
- 4 SVM active learning for image retrieval
- 5 References and further reading

Let us **consider** the following: $\{x_1...x_n\}$ are **vectors in** some **space** $X \subseteq \mathbb{R}^d$. And $\{y_1...y_n\}$ are their corresponding **labels**, where $y_i \in \{-1,1\}$.

SVMs allow one to **project** the original **training data** in space X to a **higher dimensional feature vector** F via a **Mercer kernel** K. Therefore we are considering the set of classifiers of the form:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

Given a kernel K satisfying **Mercer's condition** $K(u, v) = \Phi(u) \cdot \Phi(v)$ where $\Phi : X \to F$, we can rewrite f as:

$$f(x) = w \cdot \Phi(x)$$
, where $w = \sum_{i=1} \alpha_i \Phi(x_i)$.

A simple linear SVM

One of the commonly used **kernels** is the **radial basis function** kernel:

$$K(u, v) = e^{-\gamma(u-v)\cdot(u-v)}$$

For these kernels one **property** holds: $\| \Phi(x_i) \| = \lambda$ for some fixed λ .

Proof:

$$\parallel \Phi(x_i) \parallel = \sqrt{\Phi(x_i) \cdot \Phi(x_i)} = \sqrt{K(x_i, x_i)} = \sqrt{e^{-\gamma(x_i - x_i) \cdot (x_i - x_i)}} = \sqrt{e^0} = 1$$

Let us consider the set of **hypotheses** f, that is the set of **hyperplanes** that **separate** the **data in** the **feature space** F.

$$H = \{f \mid f(x) = \frac{w \cdot \Phi(x)}{\parallel w \parallel}, \text{ where } w \in W\}$$

W is the parameter space and is equal to F. The version space V is therefore defined as:

$$V = \{ f \in H \mid \forall i \in \{1..n\} : y_i f(x_i) > 0 \}$$

Since there is a **bijection** (an exact correspondence) between w and $f \in H$. We redefine V as:

$$V = \{ w \in W \mid || w || = 1, y_i(w \cdot \Phi(x_i)) > 0, i = 1..n \}$$

Duality

By definition **points in** W correspond to **hyperplanes in** F. How about the converse?

Duality

Suppose we have a new training instance x_i with label y_i . Then any separating hyperplane must satisfy $y_i(w \cdot \Phi(x_i)) > 0$. Rather than viewing w as the normal of a hyperplane in F, we think of $y_i\Phi(x_i)$ as being the normal of a hyperplane in W. Therefore $y_i(w \cdot \Phi(x_i)) = w \cdot y_i\Phi(x_i) > 0$ defines a half-space in W.

 $w \cdot y_i \Phi(x_i) = 0$ defines a **hyperplane in** W which acts as one of the **boundaries** to **version space** V.

Version space duality

Version space duality 2D

SVMs find the **hyperplane** that **maximizes** the **margin** in *F*.

$$maximize_{w \in F} min_i \{ y_i(w \cdot \Phi(x_i)) \}$$

subject to: $||w|| = 1$ and $y_i(w \cdot \Phi(x_i)) > 0$ for $i = 1..n$

These conditions restrict the solution to lie in version space. Given the duality between F and W and since $\| \Phi(x_i) \| = 1$, then each $y_i \Phi(x_i)$ is a unit normal vector of a hyperplane in W that delimits the version space.

We want to find the point in version space that maximizes the minimum distance to any of the hyperplanes.

SVMs find the **center** of the **largest radius hypersphere** whose **center** is **in version space** and whose **surface does not intersect** with the **hyperplanes** corresponding to the **labeled instances**.

The touched hyperplanes by this maximal radius hypersphere correspond to the support vectors and the radius of the hypersphere is the margin of the SVM.

An SVM classifier in version space

Let us first define the following:

- A pool of unlabeled instances U
- An active learner I with three components (f, q, X)
- A classifier $f: X \to \{-1,1\}$ trained on labeled data X, (and maybe on some of U)
- The querying function q(X)

The main difference between an active learner and a passive learner is the querying component q.

How to choose the next unlabeled instance in the query-pool?

Definition: Area(V) is the **surface** area that the **version space** V occupies on the **hypersphere** $\parallel w \parallel = 1$.

In order to **reduce** the **version space** as fast as possible, we can intuitively choose a **pool-query** that **halves** the **version space**.

A **Simple** method is to **learn** an **SVM** based on the **existing labeled data** X and **choose** as the **next** instance to **query** the pool **instance** that comes **closest** to the **hyperplane** in F.

Simple margin method

SVM active learning for image retrieval

SVM_{Active} algorithm summary

- Learn an SVM on the current labeled data
- If this is the first feedback round, ask the user to label twenty randomly selected images.
- Otherwise, ask the user to label the twenty pool images closest to the SVM boundary.

After the relevance feedback rounds have been performed SVM_{Active} retrieves the top_k most relevant images:

- Learn a final SVM on the labeled data
- The final SVM boundary separates relevant images from irrelevant ones. Display the k relevant images that are farthest from the SVM boundary.

Example

Initializing

Feedback Round 3

SVM active learning for image retrieval

Third Screen of Results

Fifth Screen of Results

Sixth Screen of Results

SVM active learning for image retrieval

Demo

- Simon Tong, Edward Chang. Support Vector Machine Active Learning for Image Retrieval.
- Simon Tong. Active Learning: Theory and Applications. Ph.D. Thesis.
- URL: http://ai.stanford.edu/~stong/research.html