CogSysIII Lecture 10: Intelligent Tutor Systems

Human Computer Interaction

Ute Schmid

Applied Computer Science, University of Bamberg

last change July 3, 2007
Intelligent Tutor Systems

Expert Knowledge and Skills about his/her domain

Didactic/pedagogical principles

Knowledge about typical misconceptions and how to resolve them

Model about the learning history, state of knowledge, previous errors of the individual pupil

see lecture of Frank Puppe, Würzburg:
http://ki.informatik.uni-wuerzburg.de/teach/ss-2003/its/uebungen/
Introduction (1), ITS (4), History of ITS (5)
Learning

- Change of behavior caused by experience
 - Declarative: Extension of knowledge
 - Procedural: Skill acquisition

- Improvement by restructuring or incorporation of new knowledge/skills
 - Faster or more accurate performance (power law of learning)
 - New behavior
Types of Learning

- **Rote Learning**
 The capital of France is Paris.
 5 times 7 is 35.
 A dog is a mammal.

- **Concept Learning**
 Dog, Ancestor, Preparation to an exam such that I pass

- **Skill and Strategy Acquisition**
 Making a proof by induction, preparing a travel

- **Concept learning and Skill acquisition is learning from examples, that is, inductive learning! (see lecture CogSysII)**
Paradigms for Learning

- **Behaviorism**
 - “Brain” as Black Box
 - Teaching: Connecting the stimulus with the “correct” response
 - Positive (or negative) Feedback
 - “Drill and Test”

- **Cognitivism**
 - Information processing paradigm
 - Teaching: support for problem solving, learning by doing

- **Constructivism**
 - Learners build personal interpretations of the world based on individual experiences and interactions.
 - Teaching: Align and design experiences for the learner so that authentic, relevant contexts can be experienced.
Learning with the Computer

- Independence of time/place
- Individual speed of learning, individual interests
- Individual strategies of learning (?)
- Relieve of teachers (costs, availability, quality assurance)
- Learning dangerous activities (e.g. flight simulator)
- Learning in the context of realistic models
- Problems: social component of learning (model learning), restricted human-computer communication, trade-off of effort and utility, there are many bad systems
Didactic Principles

- Motivation: intrinsical vs. extrinsical
- Encouragement of creativity: give experience of perception with all sense, allow new ideas
- Differentiation: working with homogeneous groups students
- Structuring: clear topic, separate in clear parts, systematic introduction of concepts and rules
- Illustration and exemplification
- Exercise and success control: allow for success (without making things trivial), relevance
Dimensions of Tutor Systems

- Tutor strategies
 - Explaining
 - Observing and Helping
 - Mentoring and Coaching
- Content: facts and context free rules; problem solving, complex situations, ...
- Goals: remembering, applying, understanding, discovering, ...
Types of Systems

- Presentation and Browsing
- Drill and Test
- Tutor Systems
- Intelligent Tutor Systems
- Simulations
Presentation and Browsing

- Restricted interaction, fixed branching
- Hypertext and Hypermedia
- Cheaper than books, full text search
Drill and Test

- Only tests, with statistics (percent correct answers etc.)
- Vocabular trainer, medicine exams, driving licence
- Wer wird Millionär?

Types of Questions
- Closed: Multiple Choice, Rank order, cloze (Lückentext)
- Open: input of numbers, text
Tutor Systems

- Teaching of new contents/skills, Question Answering by the system

- Simple tutor systems do not have an internal student model!

- Computer-aided instruction: module and questions, depending on the answers repetition with variations or progress

- Frame-oriented CAI: discrimination between error types and branching (variations) in dependence of the recognized type (predecessor to student model in ITS)
Simulation

- Technical or social simulation
- Can be based on causal mental models/qualitative reasoning
- Student actions are executed in the simulation model, this is the only form of feedback
- Dynamical, high degree of interaction
- E.g. simulation systems for complex problem solving (Dörner)
- E.g. SOPHIE (early system of the 70ies): debugging of electronical circuits
- E.g. LOGO (Papert, late 60ies)
- compare to Lego, electronical kits
ITS Overview

- Simple tutor systems no thing about what they teach and whom they teach

- 70ies: with the beginning of AI research, extension of tutor systems with internal knowledge modules

- Paradigm: cognitivism

- System has its own inference component

- Because of internal models: generation of interaction sequences, exercises; system is able to answer questions
Knowledge models:

- domain model
e.g. SOPHIE (geography of south america), allows mixed initiative dialogs

- learner model
e.g. GUIDON (tutor extension of the expert system MYCIN), allows diagnosis of didactical relevant states of the student
different data sources (dialog history, behavior of the student, goal-directed intervention)
Components of ITSs

Figure 6.2 Anatomy of an Intelligent Tutoring System

Source:
http://home2.pacific.net.sg/~auddrick/its.html
Components of ITSs

- GUI: often involves the most effort: robust and intuitive
- Didactic component: lecture modules, plan of sessions, pedagogical knowledge, pedagogical strategies
- Student model: model of the knowledge of the student, base for planning further didactical procedure
- Domain model: expert knowledge and skill, often executable, inference component allows to answer student questions
Applications of ITSs

- Medicin (GUIDON): problem based learning with generated feedback
- Mathematics (e.g. Geometry Tutor based on ACT): learning algebra or proofs in geometry with step-by-step application and generated feedback
- Programming (e.g. Lisp Tutor based on ACT)
- many more: see history of ITS
Pros and Cons of ITSs

- Pro: Highly flexible and adaptive
- Main Problem: very high effort, esp. for domain model and for some types of student models
- Restricted language for the student-tutor dialogs
- No inter-human student-teacher relationship
Domain Model

- Source of Knowledge and standard for evaluation of student inputs
- must be communicable (simple, *symbolic* repres.)
- simple processing (no complex numerical calculations such as Bayes), no complex control structures (best is linear, no nesting of loops etc)
- Relation to previous knowledge of students
- May be knowledge on different competence levels
- Knowledge Representation with: semantic nets, frames, rules, constraints, qualitative or quantitative simulation
- Diagnostic knowledge models: decision trees, heuristic diagnosis, case-based diagnosis
- Agent models for distributed knowledge, ...
Student Model

- What does the student know? (know that)
- What can the student do? (know how)
- What did the student do until now? (history)
- What type is the student?
- Input/Generation:
 - explicit: stereotype selection
 - implicit interrupting: interruption, explicit enquirey
 - implicit automatically: monitoring
Types of Student Models

- Stereotypes
- Error Libraries
- Overlay Models
- Extended Overlay Models
- Constructive Models
Stereotypes

- Facts, attributes and preferences which are interrelated
- Example intermediate student knows all simple knowledge units and some medium-level knowledge units
Error Libraries

- Collection of typical errors and misconceptions of students
- Select an item from the library during a tutoring situation
- Simple and flexible, but high costs in assessment
Overlay Model

- Domain model is extended by annotations: which knowledge unit is known by a student
- Simple but not flexible
- Implicit assumption: errors are due to incomplete knowledge
- Extended Overlay Model: additionally taking into account errors and misconceptions; can be generated from knowledge elements or from error library (very good but very expensive)
Dynamically Constructed Model

- Use machine learning to generate models about student knowledge
- highly flexible but difficult to obtain
Applications

- WHY, SOPHY: no student model
- Geography Tutor SCHOLAR: overlay model initiative dialog
- BUGGY (and others): error libraries
- LISP-Tutor: extended overlay (correct and erroneous production rules)

These and other classical systems are presented in lecture 5 of Frank Puppe.
Problems with Student Models

- How good can a student model be?
 - inconsistencies in behavior due to motivation, concentration, “luck”
 - Combinations of errors can produce unexpected (maybe even correct) behavior

- Clustering students in learning psychological stereotypes (cognitive styles; motivational styles) is controversial

- Privacy and data security
Didactical Module

- Which paradigm? which kind of learning? (reception, transfer, problem solving, ...) which competences? (cognitive, organizational, communicative ...)
- Initiative: system, learner, mixed
- Presentation: sequence, degree of guidance
- Tasks: number, time, complexity
- Feedback: eager or by request, hints, explanations, examples
Dealing with Student Errors

What kind of error?
- Profound error in content/in learning progress?
- Error rates; repetition of same error?
- Error recognized with certainty?
- Reaction: ignore, protocol, hint, insist on correction

Typically realized by set of rules
Explanations and Evaluations

- Explanations by the student (socratical dialog): open or closed form inputs; evaluation by tutor system, relation to explanations of domain model

- Explanations of the system: pre-formulated or generated, general or situational, automatically or by request, degree of details

- Evaluation: generated or static, situational or dependent on result
GUI

- Robust, efficient, easy to learn and use
- Interaction language: commands, restricted natural, natural
- Interface to model: icons, menus, graphics
- Flexible navigation (event based vs guided)
- Taking account of context, learning history

requirements for GUID see last slides in lecture 4 of Puppe
Current Trends

- Reuse and standardisation of content
- Support of collaborative learning, distant learning
- Adaptive tutor systems
 - e.g. Netcoach